Theoret. Chim. Acta (Berl.) 45, 309-315 (1977)

9 by Springer-Verlag 1977

Topological Properties of Benzenoid Systems

An Identity for the Sextet Polynomial

Ivan Gutman

Institute "Rudjer Bošković", P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia

The sextet polynomial of non-branched cata-condensed benzenoid molecules is proved to be related (Eq. (3)) to the characteristic polynomial of a tree.

Key words: Benzenoid systems, topological properties of \sim

I. **Introduction**

Several recent investigations $\lceil 1, 2 \rceil$ have shown that resonance theory gives satisfactory quantitative results when applied to benzenoid hydrocarbons. The combinatorial background of this theory was also studied [3, 4]. Hosoya and Yamaguchi demonstrated [4] that various resonance-theoretical approaches can be unified by means of the sextet polynomial. For a benzenoid hydrocarbon G, the sextet polynomial $B_G(X)$ is defined as

$$
B_{\mathcal{G}}(X) = \sum_{k=0}^{m} r(G, k) X^{k}
$$

where $r(G, k)$ is the so called "resonant sextet number", namely the number of ways in which k mutually resonant sextets can be selected from G. m is the maximal number of mutually resonant sextets. By definition, $r(G, 0) = 1$. Further details on these resonance-theoretical notions can be found in Refs. $[4, 5]$.

Let the benzenoid molecule possess R rings. Then instead of the sextet polynomial we can consider another polynomial $BB_G(X)$,

$$
BB_{\mathcal{G}}(X) = X^{R+1}B_{\mathcal{G}}(-1/X^2) = \sum_{k=0}^{\left[(R+1)/2 \right]} (-1)^k r(\mathcal{G}, k) X^{R+1-2k}
$$
 (1)

The form of $BB_G(X)$ resembles much to the characteristic polynomial of a tree (i.e. of an acyclic graph) with $R+1$ vertices (see Eq. (2)).

No simple and generally valid algorithm for the calculation of the sextet polynomials is known at present. The usual way of determining $B_c(X)$ by considering all possible selections of resonant sextets in G is not only rather tedious, but is also unreliable for complicated polycyclic systems. In the present paper it will be shown that the calculation of $B_G(X)$ for non-branched cata-condensed benzenoid $(NBCCB)¹$ molecules is reduced to the finding of the characteristic polynomial of a tree T. This tree can be easily deduced from the structure of the NBCCB network.

Before starting with the consideration of the properties of the sextet polynomial, we shall describe a class of trees.

Let P_n denote the path² with *n* vertices. The tree $T(t_1, t_2, \ldots, t_n)$ is obtained by joining t_i new vertices to the j'th vertex of P_n (j = 1, 2, ..., n). Thus t_i is an integer or zero. If $t_1 = t_2 = \cdots = t_n = 0$, then $T(t_1, t_2, \ldots, t_n) = P_n$. The number of vertices of $T(t_1, t_2, \ldots, t_n)$ is $N = t_1 + t_2 + \cdots + t_n + n$. For example we present $T(4)$, $T(2, 1, 0, 0, 0)$ and $T(1, 1, 3, 0, 0, 2)$.

The characteristic polynomial of a tree T has the form $[7]$:

$$
P_T(X) = \sum_{k=0}^{[N/2]} (-1)^k p(T, k) X^{N-2k}
$$
 (2)

where $p(T, k)$ is the number of ways in which k non-incident edges can be selected from T.

The analogy between expressions (2) and (1) is evident. In the following we will demonstrate that there exists indeed a tree T such that for a particular class of benzenoid molecules,

$$
BB_G(X) = P_T(X) \tag{3}
$$

¹ A molecular network which is composed entirely of regular hexagons is called benzenoid. If no three hexagons have a common atom, the system is called cata-condensed (in the opposite case, the system is peri-condensed). If every hexagon of a cata-condensed system has at most two neighbouring hexagons, it is said to be non-branched. [6]

² The "path" (or "chain") with n vertices is the graph with the properties that the j'th vertex is adjacent to the $(j-1)$ 'th and $(j+1)$ 'th, and only to them $(j=2, 3, ..., n-1)$.

2. Some Topological and Resonance-Theoretical Properties of NBCCB Molecules

Let us consider an R-cyclic NBCCB system G and denote by $R(i)$ ($i = 1, ..., R$) its rings. These rings will be numbered successively, so that the ring $R(i)$ is neighbouring to the rings $R(j-1)$ and $R(j+1)$. Hence, $R(1)$ and $R(R)$ are terminal rings. Of course [4, 5], $R(i)$ presents also a resonant sextet.

A ring in a NBCCB hydrocarbon can be annelated exactly in two distinct ways, namely in a linear (L) or in an angular (A) mode.

Therefore, the ring R(j) can be labelled by a symbol S_j , where either $S_j = L$ or $S_j = A$. The two terminal rings can have arbitrary labels, but it is convenient to denote them by L. Thus an ordered sequence $S = S(G) = S_1S_2...S_R$ of L and A symbols (an "L, A-sequence") can be associated with every NBCCB system G. For example, molecules 1 and 2 have $S(1) = L L L L$ and $S(2) = L A A L A L A L$.

For brevity we will denote *LL* by L^2 , *LLL* by L^3 etc.

In a general case the L , A-sequence S is of the form

$$
S = (L)^{s_1} A (L)^{s_2} A \dots (L)^{s_{n-1}} A (L)^{s_n} \tag{4}
$$

where s_i are non-negative integers. In other words, the rings $R(s_1 + 1)$, $R(s_1 + s_2)$ $+2, \ldots, R(s_1 + s_2 + \cdots + s_{n-1} + n-1)$ are assumed to be of A-mode, while all others of the *L*-mode. Since G has *R* rings, $R = s_1 + s_2 + \cdots + s_n + n - 1$.

Theorem 1. Eq. (3) holds for every G which is a NBCCB hydrocarbon. If the L, A-sequence of G is given by Eq. (4), then $T=T(s_1, s_2, \ldots, s_n)$.

Proof. If T is a tree with R edges (and therefore with $R + 1$ vertices), such that for all *i*, *j* the edges e_i , e_j are mutually non-incident if $R(i)$ and $R(j)$ are mutually resonant, then

 $p(T, k) = r(G, k)$

from which Theorem 1 is deduced straightforwardly. Therefore, in order to demonstrate the validity of Theorem 1, it is sufficient to prove the following

Theorem 2. The edges of the graph $T(s_1, s_2, \ldots, s_n)$ can be labelled in such a way that any pair of edges e_i , e_i is non-incident, whenever $R(i)$ and $R(j)$ are mutually resonant in G, with $S(G)$ being given by Eq. (4).

Proof. Let us consider the ring $R(p)$ of G. Then the sequence S is of the form

$$
S = \dots A(L)^{a-1} S_p(L)^{b-1} A \dots \tag{5}
$$

where a and b are integers. In other words, we assume that $R(p - a)$ and $R(p + b)$ are the nearest (relative to $R(p)$) angularly annelated rings.

Now, it can be verified straightforwardly that the sextets $R(p-a), \ldots, R(p-1)$, $R(p+1), \ldots, R(p+b)$ can never be resonant if the sextet $R(p)$ is resonant. This occurs simply because the double bonds in $R(p-a), \ldots, R(p-1), R(p+1), \ldots$ $R(p + b)$ become localized after $R(p)$ is deleted from G. Let us illustrate this on two examples. The resonant sextet $R(p)$ is indicated by a circle.

 $S_n = L$, $a = 2$, $b = 3$

Sp=A,a=2, b=3

Furthermore, since the double bonds in the rings $R(1), \ldots, R(p-a-1), R(p+b)$ $+ 1)$,..., $R(R)$ are not localized when $R(p)$ is deleted from G, the sextets $R(p)$, $R(i)$ and R(j) are mutually resonant, where $i=1,\ldots,p-a-1$ and $j=p+b+1,\ldots,R$.

This discussion leads to the following conclusion.

- a) If $S_p = A$, any two sextets $R(i)$, $R(j)$ are mutually resonant for $i = p a$ $+1, \ldots, p-1$ and $j=p+1, \ldots, p+b-1$.
- b) If $S_n = L$, no two such sextets R(i), R(j) are mutually resonant.

Let us now represent every ring $R(j)$ of G by an edge e_i and try to construct a tree T with the properties required in Theorem 2. Then statements a) and b) read,

- a^{*}) If $S_p = A$, any two edges e_i , e_i are mutually non-incident if $i = p a + 1, \ldots$, $p-1$ and $j=p+1, \ldots, p+b-1$.
- b^{*}) If $S_p = L$, any two of such edges e_i , e_j are incident.

This situation can be uniquely realized by the graph fragments 3 (for $S_p = A$) and 4 (for $S_p = L$):

 a^{**}) If $S_n = A$

$$
b^{**}) \text{ If } S_p = L
$$

But the graph fragments 3 and 4 are exactly Theorem 2 applied to Eq. (5). The extension of a^{**}) and b^{**}) to the whole sequence S given by Eq. (4), completes finally the proof of Theorem 2.

Corrolary 1. Every tree $T(t_1, t_2, \ldots, t_n)$ can be associated with an L, A-sequence (Eq. (4)) and thus with a class of NBCCB molecules.

For example, the trees $T(4)$, $T(2, 1, 0, 0, 0)$ and $T(1, 1, 3, 0, 0, 2)$ correspond to sequences *LLLL, LLALAAA = LLALAAL* and *LALALLLAAALL,* respectively.

Corrolary 2. If two NBCCB systems have the same *L,* A-sequence, and therefore the same associated tree, they are indistinguishable from the viewpoint of resonance theory. The smallest such molecules are 5 and 6; both have an *LAAL* sequence, with P_5 being their associated tree.

Using Theorem 1, it is rather simple to construct the tree T associated with any NBCCB hydrocarbon. For example, the trees corresponding to molecules 1 and 2 are $T(4)$ and $T(1, 0, 1, 0, 1, 1)$, respectively.

Finally, it is important to note that the validity of Theorem 1 cannot be simply extended, neither to branched cata-condensed, nor to peri-condensed molecules. Namely, for the smallest branched cata-condensed (7) and peri-condensed (8) benzenoid systems, the corresponding $r(G, k)$ values cannot be related to the coefficients of the characteristic polynomial of any graph.

3. Discussion

Theorem 1 is, as to the author's knowledge, the first case that graph spectral theory plays some role in the theory of conjugated compounds *independently of the Hückel molecular orbital model.* The main applicability of our result is in determining $B_G(X)'$ s. There are well known simple graph-theoretical techniques [8] for the calculation of the characteristic polynomial of a tree. Hence, for example, the characteristic polynomials of $T(4)$, $T(1, 0, 1, 0, 1, 1)$ and $T(1, 0, 1)$ are $X^5 - 4X^3$, $X^{10} - 9X^8 + 26X^6 - 27X^4 + 8X^2$ and $X^5 - 4X^3 + 3X$, respectively. Therefore, $B_1(X)$ $= 1 + 4X$, $B_2(X) = 1 + 9X + 26X^2 + 27X^3 + 8X^4$ and $B_3(X) = B_6(X) = 1 + 4X + 3X^2$. The evaluation of $B_2(X)$ without the use of our theorem would be rather tedious.

Since $B_G(1)$ is equal to the number of Kekule structures $K = K(G)$ of the molecule G [4], from Eq. (3) it follows,

$$
K(G) = \sum_{k=0}^{[(R+1)/2]} p(T, k) = Z_T
$$

where Z_T is the topological index of Hosoya [7, 9]. The K value of the molecule 2 (= 71) could hardly be obtained by "brute force" enumeration.

As a final application we mention that recently Aihara [2] found that the roots of

Topological Properties of Benzenoid Systems 315

 $B_c(X)$ can be used for the calculation of the resonance energy (and thus aromaticity) **of G. Because of Eq. (3), these roots are closely related to the spectrum of T, and therefore the resonance energy of a NBCCB hydrocarbon is obtained from the spectrum of its associated tree T.**

References

- 1. Herndon, W. C. : J. Am. Chem. Soc. 95, 2404 (1973); J. Org. Chem. 40, 3583 (1975); Herndon, W. C., Ellzey, M. L.: J. Am. Chem. Soc. 96, 6631 (1974); Swinborne-Sheldrake, R., Herndon, W. C., Gutman, I. : Tetrahedron Letters, 755 (1975); Aihara, J. : Bull. Chem. Soc. Japan 49, 1429 (1976); Randić, M.: Chem. Phys. Letters 38, 68 (1976)
- 2. Aihara, J.: private communication
- 3. Gutman, I., Herndon, W. C.: Chem. Phys. Letters 34, 387 (1975)
- 4. Hosoya, H., Yamaguchi, T.: Tetrahedron Letters, 4659 (1975)
- 5. Clar, E.: The aromatic sextet. London: Wiley 1972
- 6. Balaban, A. T., Harary, F.: Tetrahedron 24, 2505 (1968); Balaban, A. T.: Tetrahedron 25, 2949 (1969); Gutman, I.: Croat. Chem. Acta 46, 209 (1974)
- 7. Hosoya, H.: Theoret. Chim. Acta (Berl.) 25, 215 (1972)
- 8. Heilbronner, E.: Helv. Chim. Acta 36, 170 (1953); Harary, F., King, C., Mowshowitz, A., Read, R. C.: Bull. London Math. Soc. 3, 321 (1971)
- 9. Hosoya, H.: Bull. Chem. Soc. Japan 44, 2332 (1971)

Received March 1, 1977